The multidrug resistance phenotype: 31P nuclear magnetic resonance characterization and 2-deoxyglucose toxicity.
نویسندگان
چکیده
In order to identify changes in 31P nuclear magnetic resonance (NMR) spectra associated with multiple drug resistance (MDR), a number of wild type and drug-resistant cancer cell lines were studied. The resistant cells included cells selected with various drugs, mainly Adriamycin, as well as cells transfected with the human multidrug resistance gene (MDR1 gene), which encodes P-glycoprotein. In most cases, 31P NMR spectra were significantly different from those of parental, drug-sensitive lines. The spectra of resistant cells generally indicated increased levels of ATP and phosphocreatine in the cytoplasm. These changes are compatible with the increased glucose utilization rate previously described for resistant cells. Major changes were also observed in the levels of glycerophosphocholine and glycerophosphoethanolamine. Changes in cellular metabolism reflected by 31P NMR spectra depend on the drug used to select the cells for MDR. The direction of these changes was not consistent for all cell lines studied and could not be directly attributed to expression of P-glycoprotein, suggesting that the changes may be related to alterations in metabolism and membrane function associated with other mechanisms of MDR. The results demonstrate the suitability of 31P NMR for studies of biochemical changes associated with MDR. The toxicity of 2-deoxyglucose, a glucose antimetabolite, was investigated in addition to the NMR studies and was found to be consistently higher in multidrug-resistant cells than in the parental drug-sensitive lines. For MCF-7 breast cancer cells, where several sublines with different levels of resistance were available, the toxicity was highest for the most resistant lines.
منابع مشابه
Action of gossypol and rhodamine 123 on wild type and multidrug-resistant MCF-7 human breast cancer cells: 31P nuclear magnetic resonance and toxicity studies.
The action of gossypol, a polyphenolic bisnaphthalene aldehyde, on a number of drug-sensitive and multidrug-resistant cell lines, in particular MCF-7 WT and MCF-7 ADR cells, was studied and compared to the effects of rhodamine 123. 31P nuclear magnetic resonance spectra of cells exposed to low concentrations of gossypol exhibited decreased levels of ATP, markedly increased levels of pyridine nu...
متن کامل31P nuclear magnetic resonance evidence for the regulation of intracellular pH by Ehrlich ascites tumor cells
The phenomenon of intracellular pH (pHin) regulation in cultured Ehrlich ascites cells was investigated using 31P nuclear magnetic resonance (NMR) spectroscopy. Measurements were made with a Bruker WH 360 wide bore NMR spectrometer at a 31P frequency of 145.78 MHz. Samples at a density of 10(8) cells ml-1 were suspended in a final volume of 2 ml of growth medium in 10 mm diameter NMR tubes. Int...
متن کاملRole of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment: 31P, 23Na, and 1H MRS studies of three models of pancreatic cancer.
The role of nuclear magnetic resonance spectroscopy (MRS) in pancreatic cancer diagnosis and its treatment were assessed in three models of pancreatic neoplasms. Perfused MIA PaCa-2 human pancreatic cancer cells, s.c. implanted pancreatic tumors in hamsters, and pancreatic tumors induced in situ in rats by direct application of the carcinogen 7,12-dimethyl benzanthracene, were studied by phosph...
متن کاملPhosphorus chemical shift tensors in dithiadiphosphetane disulfides determined by solid-state 31P nuclear magnetic resonance.
The phosphorus chemical shift tensors of two dithiadiphosphetane disulfides, 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-di sulfide (1) and 2,4-bis(methylthio)-1,3-dithia-2,4-diphosphetane-2,4-disu lfi de (2), have been characterized by solid-state 31P nuclear magnetic resonance (NMR) measurements. The weak homonuclear dipolar interaction between the two 31P nuclei in each of thes...
متن کامل31P-nuclear magnetic resonance spectroscopy of blood: a species comparison.
31P-nuclear magnetic resonance (NMR) spectroscopy isfrequently used as a tool in the study of organs from various animal species and humans. Because signals arising from the presence of blood are visible in in vivo 31P-NMR spectra of blood-filled organs, such as the heart, it is necessary to correct these spectra for the contribution of blood to the signal. It is unknown whether species differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 51 6 شماره
صفحات -
تاریخ انتشار 1991